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Abstract

For stand alone power supply systems based on fuel cells to work efficiently, the fuel cell stack has to be configured so that it delivers
the maximum power output at the load’s operating voltage. This paper discusses how genetic algorithms were applied to optimise a proton
exchange membrane fuel cell stack design by searching for the best configuration in terms of number of cells and cell surface area. First, a
mathematical simulation model of the fuel cell was developed. The model parameters were obtained by fitting the mathematical model to
experimental data. A genetic algorithm code was then developed. The code is based on the fuel cell stack model as an evaluation measure
for the fitness of the solutions generated. Results are presented confirming the effectiveness of using the genetic algorithm technique for
fuel cell configuration.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Proton exchange membrane fuel cells (PEMFC) offer a
number of advantages compared to other types[1–5]. Many
papers have been published on different aspects of PEM fuel
cells [6–9], but the issue of stack sizing and configuration
has received little attention.

Section 2of this paper introduces the fuel cell model.
In section 3, the parameters were fitted using experimental
data.Section 4discusses the fuel cell stack design, while the
use of genetic algorithms to optimise the stack is presented
in Section 5. Results obtained are given inSection 6.

2. Fuel cell modelling

Many fuel cell mathematical models are available in the
literature[10–15]. The one used in this work was adapted
from [16]:

VS = Z(EO − ηact − ηohm − ηcon) (1)

where,VS is the stack voltage,Z is the number of series
connected cells in the stack,EO is the open circuit voltage,
andηact, ηohm, ηcon are the voltage drops occurring when
the load draws a current from the fuel cell stack.

∗ Corresponding author.
E-mail address: ibrahim irhoma@yahoo.co.uk (I. Mohamed).

The theoretical open circuit voltage for a hydrogen–oxygen
fuel cell is about 1.2 V [16]. Practically, the operat-
ing voltage is less than this value due to a number of
irreversibilities.

The activation over potentialηact is due to voltage lost in
activating the chemical reactions to take place at the fuel cell
electrodes. This over potential is important at low currents
and can be expressed as:

ηact = A ln

(
i

i0

)
(2)

whereA is called Tafel slope and is measured in volts,i is
the fuel cell stack current density in mA/cm2, andi0 is the
exchange current density in mA/cm2.

The ohmic lossηohm is due to the electrolyte resistance
to the flow of ions across it, and the resistance of the elec-
trode material to the flow of electrons. The ohmic losses is
linearly proportional to the stack current and is given by the
following simple expression:

ηohm = ri (3)

wherer is the area specific resistance of the fuel cell mea-
sured in k	 cm2.

The concentration lossηcon is related to the consump-
tion of reactants by the fuel cell. As the reactants are used
by the fuel cell, their concentration changes at the surface
of the cell electrodes causing a drop in operating voltage.
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Fig. 1. I–V characteristic of a typical fuel cell.

Concentration loss is related to the fuel cell current by the
following equation:

ηcon = −B ln

(
1 − i

iL

)
(4)

whereB is a concentration loss constant given in volts, and
iL is the limiting current density at which the cell voltage
will fall rapidly. iL is measured in mA/cm2.

Other causes for the fuel cell voltage drop are fuel
crossover and internal currents. Reasons for this are the
waste of fuel that passes directly through the electrolyte
producing no electrons and electron conduction through the
electrolyte and not passing through the electrodes. This will
have an increasing effect on the current withdrawn from the
cell by a value ofin.

By combiningEqs. (1)–(4)and introducing the internal
and fuel crossover equivalent current density, the mathemat-
ical polarisation curve model of the fuel cell will be:

VS = Z

[
EO − A ln

(
i + in

i0

)
− r(i + in)

+ B ln

(
1 − i + in

iL

)]
(5)

A plot of Eq. (5) comparing the ideal case with a typical
current voltage characteristic of a fuel cell is presented in
Fig. 1.

3. Fuel cell mathematical mode fitting

For the mathematical model given byEq. (5) to be used
for fuel cell simulation and design, the values of the follow-
ing parameters have to be obtained:EO, A, In, IO, R, B, IL.
To accomplish this, an experiment was set up based on an
educational solar hydrogen test rig. A sketch of the appara-
tus is shown inFig. 2. It consists of two 10 cm2 fuel cells
that can be connected either in parallel or series. A solar
module of four cells was used to power a 25 cm2 electrol-
yser to produce hydrogen at a maximum rate of 28 ml/min.

Fig. 2. Sketch of a PV-H2 test rig.

The hydrogen is stored in a cylindrical tank ready for use by
the fuel cells. To examine the fuel cell at different loads, se-
lectable resistances ranging from 0.3 to 100	 are connected
to fuel cell terminals. Current and voltage at each load are
displayed on LCD panels of a digital ammeter/voltmeter.

Successive measurements of the fuel cell current and volt-
age were recorded for different loads. The open circuit volt-
age was first measured at no load giving a value of 0.955 V.
Then the resistances were decreased in a sequence of 100,
50, 20, 10, 5, 2, 1, 0.5, 0.3	. Fig. 3 showsI–V plot of the
measured values.

The experimentally measuredI–V data were fitted to
Eq. (5). This was accomplished by a computer code de-
veloped using the optimisation toolbox of the MATLAB
software.

All the parameters inEq. (5) were left free. Values ob-
tained of the parameters agreed well with those found in the
literature and are given inTable 1.

4. Fuel cell stack configuration

Fuel cells can be connected in series and parallel forming
a stack to produce more power output. The cell’s area is also
a key factor in increasing this power.

Fig. 3. ExperimentalI–V curve of fuel cell.
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Table 1
Fuel cell model fitted parameters

Parameter Value

EO (V) 1.04
A (V) 0.05
In (mA/cm2) 1.26
IO (mA/cm2) 0.21
R (k	 cm2) 98 × 10−6

B (V) 0.08
IL (mA/cm2) 129

A research project aimed to design a power supply system
to provide dc electricity for a single dwelling in a remote area
of a developing country. The system used solar hydrogen
technology, where a fuel cell stack will be used to convert
hydrogen into electricity. The system load was estimated to
be 730 kW h per year operating on 12 V dc.

The task was to configure the fuel cell stack so that it
fulfils the design requirements of delivering the right amount
of power at 12 V dc. In addition, the fuel cell stack should
be of acceptable physical size to be used in a family house.
However, numerous trials were necessary in order to choose
the optimal design parameters (number of cells in series and
in parallel and the cell’s surface area). In order to overcome
this problem, genetic algorithms were used.

5. Fuel cell stack design using GAs

Genetic algorithms are search methods that can be used
to solve optimisation problems by implementing powerful
search techniques to find an optimal solution within a large
search space (possible solutions to the problem).

Genetic Algorithm techniques are based on natural bio-
logical evolution[17]. A genetic algorithm works by gen-
erating a large set of possible solutions to a given problem.
It then evaluates each of these solutions, and decides on a
“fitness level” which is closer to the optimal solution. These
solutions then breed new solutions. The parent solutions that
were more fit are more likely to reproduce, while those that
were less fit are less likely to do so. GA operators, mainly
crossover and mutation, achieve the reproduction of solu-
tions [18].

Crossover combines the features of two parent chromo-
somes (solutions) to form two new similar children (new
solutions) by swapping corresponding segments of parents
[19]. Mutation is done by randomly changing one or more
genes (parameters within a solution), by a random change
with a probability equals to mutation rate. Crossover is
aimed at exchanging information between different poten-
tial solutions, while mutation is aimed at introducing some
extra variability into the population[20].

To design the fuel cell stack using genetic algorithms, or
in other words to optimise the three design parameters which
are number of stack cells in series, number of stack cells in
parallel, and cell’s surface area, a MATLAB computer code

Fig. 4. The genetic code to obtain the fuel cell optimal parameters.

was developed. The code starts with generating solutions
by randomly selecting values for the design parameters be-
tween upper and lower limits provided by designer. These
solutions are evaluated using the fitness function. The fitness
function is based on the fuel cell mathematical model given
by Eq. (5). The solutions are inserted into the model, and the
I–V characteristic is calculated. The penalty approach[20]
was used to penalise solutions not producing the required
amount of power. Those that do so are ranked using a linear
rank selection technique[18] according to the nearness of
stack operating voltage at the maximum power point to 12 V.
Then, a stochastic universal sampling method[20] was used
to select some of the good solutions to form a new popula-
tion of solutions. Crossover and mutation are then applied
to the selected solutions to produce new off springs. This
process continues till the specified number of generations is
reached.

A flowchart of the steps of the genetic code used to get the
optimal parameters is shown inFig. 4. The parameters values
of genetic algorithms used are given inTable 2. Table 3gives
the upper and lower limits of the optimised parameters.

Table 2
Values of genetic algorithm parameters

Parameter Value

Number of generations 200
Population size 20
Number of parameters 3
Crossover rate 90%
Mutation rate 10%



I. Mohamed, N. Jenkins / Journal of Power Sources 131 (2004) 142–146 145

Table 3
Upper and lower values of the parameters to be optimised (search space)

Parameter Lower limit Upper limit

Number of stack cells in series 1 50
Number of stack cells in parallel 1 50
Cell’s area (cm2) 10 400

Fig. 5. Solutions average fitness.

6. Results

By executing the fuel cell stack design genetic code, so-
lutions were generated, evaluated for their fitness, and then
genetically modified to converge to the optimal parameter
values.Fig. 5 shows the average fitness of the 20 solutions
processed at each generation. Here the lower the fitness value
the better the solution is. This is so because the fitness is
measured in terms of how far the fuel cell stack voltage at
maximum power point is from the load’s operating voltage.
It is clear that as the number of generations approaches the
end, the code gets closer to the optimal solution.

Fig. 6 illustrates the convergence of the genetic code to-
wards the optimal solution. This is clear that the difference
between the stack’s voltage and the load’s operating voltage
at generation 200 is just 1.5 × 10−6 V. This corresponded
to the optimal design parameters, which are given in
Table 4.

In order to verify the performance of the fuel cell stack de-
signed using genetic algorithms, the optimal design parame-
ters values were fed back to mathematical polarisation curve
model to perform performance simulation.Fig. 7shows the

Table 4
Optimal values for the fuel cell stack design parameters

Parameter Optimal value

Number of stack cells in series 21
Number of stack cells in parallel 1
Cell’s area (cm2) 12.5 × 12.5

Fig. 6. Fitness of best solution during the generations.

Fig. 7. Fuel cell stack polarisation curve using optimal parameters obtained
by GA code.

Fig. 8. Voltage power characteristics of the fuel cell stack using the
optimal parameters from GA.
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current voltage characteristics of the stack, while the power
voltage characteristic is presented inFig. 8.

7. Conclusion

In this paper, a mathematical polarisation curve model
for proton exchange membrane fuel cell was presented. The
model was verified against experimental data, and offers a
very useful tool for fuel cell behaviour simulation. The pa-
per also described how a fuel cell stack can be configured
using genetic algorithms. A genetic algorithm code was de-
veloped using MATLAB. The code evaluation function was
based on the simulation model as a measure for the solu-
tions fitness. For the design case studied in this paper, the
genetic code took only 2 min to arrive to an optimal solu-
tion. This solution was verified by feeding it to the fuel cell
model and performing current–voltage and power–voltage
characteristic simulations.
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